Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine.
نویسندگان
چکیده
Mutations in the key enzyme of sialic acid biosynthesis, uridine diphospho-N-acetylglucosamine 2-epimerase/N-acetylmannosamine (ManNAc) kinase (GNE/MNK), result in hereditary inclusion body myopathy (HIBM), an adult-onset, progressive neuromuscular disorder. We created knockin mice harboring the M712T Gne/Mnk mutation. Homozygous mutant (Gne(M712T/M712T)) mice did not survive beyond P3. At P2, significantly decreased Gne-epimerase activity was observed in Gne(M712T/M712T) muscle, but no myopathic features were apparent. Rather, homozygous mutant mice had glomerular hematuria, proteinuria, and podocytopathy. Renal findings included segmental splitting of the glomerular basement membrane, effacement of podocyte foot processes, and reduced sialylation of the major podocyte sialoprotein, podocalyxin. ManNAc administration yielded survival beyond P3 in 43% of the Gne(M712T/M712T) pups. Survivors exhibited improved renal histology, increased sialylation of podocalyxin, and increased Gne/Mnk protein expression and Gne-epimerase activities. These findings establish this Gne(M712T/M712T) knockin mouse as what we believe to be the first genetic model of podocyte injury and segmental glomerular basement membrane splitting due to hyposialylation. The results also support evaluation of ManNAc as a treatment not only for HIBM but also for renal disorders involving proteinuria and hematuria due to podocytopathy and/or segmental splitting of the glomerular basement membrane.
منابع مشابه
Sizing up sialic acid in glomerular disease.
A new study by Galeano and colleagues in this issue of the JCI reports the first glomerular disease caused by a genetic defect in sialic acid biosynthesis (see the related article beginning on page 1585). Mice that harbor mutations in the Gne/Mnk gene produce lower amounts of sialic acid, suffer from hematuria, proteinuria, and structural defects in the glomerulus and die within days after birt...
متن کاملDomain-specific characteristics of the bifunctional key enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase.
UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is a bifunctional enzyme, which initiates and regulates sialic acid biosynthesis. Sialic acids are important compounds of mammalian glycoconjugates, mediating several biological processes, such as cell-cell or cell-matrix interactions. In order to characterize the function of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine k...
متن کاملThe application of N-acetylmannosamine to the mammalian cell culture production of recombinant human glycoproteins
Introduction Sialic acid (N-acetylneuraminic acid, NeuAc, Neu5Ac) is an essential terminal sugar on the glycan moieties of many functional and structural human glycoproteins. A key intermediate in the biochemical process to form sialic acid is the monosaccharide, ManNAc, which is formed by the bifunctional enzyme UDPN-acetylglucosamine / Nacetylmannosamine epimerase kinase (GNE). ManNAc is an i...
متن کاملA novel approach to decrease sialic acid expression in cells by a C-3-modified N-acetylmannosamine.
Due to its position at the outermost of glycans, sialic acid is involved in a myriad of physiological and pathophysiological cell functions such as host-pathogen interactions, immune regulation, and tumor evasion. Inhibitors of cell surface sialylation could be a useful tool in cancer, immune, antibiotic, or antiviral therapy. In this work, four different C-3 modified N-acetylmannosamine analog...
متن کاملThe Key Enzyme of the Sialic Acid Metabolism Is Involved in Embryoid Body Formation and Expression of Marker Genes of Germ Layer Formation
The bi-functional enzyme UDP-N-acetyl-2-epimerase/N-acetylmannosamine kinase (GNE) is the key enzyme of the sialic acid biosynthesis. Sialic acids are negatively charged nine carbon amino sugars and are found on most glycoproteins and many glycolipids in terminal positions, where they are involved in a variety of biological important molecular interactions. Inactivation of the GNE by homologous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 117 6 شماره
صفحات -
تاریخ انتشار 2007